

Biofuels from CO₂ Using Ammonia-Oxidizing Bacteria In a Reverse Microbial Fuel Cell

Scott Banta
Kartik Chandran
Alan West

Conventional and Reverse Microbial Fuel Cells (MFCs)

Critical innovation need is the Electron Mediator

Ammonia Oxidizing Bacteria

- Nitrosomonas europaea are chemolithoautotrophic ammonia-oxidizing-bacteria that are found in wastewater treatment operations
- They fix CO₂ while oxidizing ammonia to nitrite
- The DOE has already sequenced the N. europaea genome

Chain et al., J Bacteriol, 2003

Ammonia as a Redox Mediator

- We are using ammonia as a redox mediator in a reverse microbial fuel cell
- Cells are planktonic they do not need to contact the electrode – 3D liquid cultures
- Nitrite can be electrochemically reduced back to ammonia
- N. europaea can be grown on electricity and air

Metabolic Engineering

- This platform can be modified for biofuel production
- Metabolic engineering has been used to create new organisms that produce isobutanol and other higher alcohols using 2-keto acids
- We will add the metabolic pathway to *N. europaea* to enable them to generate isobutanol through the valine biosynthesis pathway

Microbiology Results

- N. europaea cells are tolerant of high ammonia and high nitrite concentrations
- Cells are not impacted by electrochemical reduction of media
- Genetic modification of N. europaea cells for isobutanol production currently is underway

Electrochemical Results

- Various electrode materials and operating conditions have been explored
- An electrochemical reactor has been designed and built
- Very high current efficiencies can be achieved for the reduction of nitrite to ammonia

Current Efficiency for Different Electrode Materials

Process Development

- Cost of isobutanol will depend strongly on cost of electricity – Electrochemical process may be operated when electricity is cheapest
- Ammonia can also be supplemented from wastewater treatment operations

Process Development

- Wastewater treatment and electrochemical remediation of nitrate have already been scaled-up and practiced on the industrial scale
- Other pathways can be introduced into N. europaea to create other biofuels and chemicals

Columbia ARPA-E Team

Prof. Michael Hill

sbanta@columbia.edu

